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Abstract

The Campi Flegrei (CF) volcanic system near Naples, Italy, poses a significant hazard due to
bradyseism — a slow vertical ground deformation resulting in either uplift or subsidence. Indeed,
between January 2005 and January 2025, the urban area of Pozzuoli experienced approximately 1.4
m of uplift (GNSS RITE Station). The bradyseism is driven by a combination of hydrothermal and
magmatic processes, whereby pressurized magmatic fluids generated by deep magma crystallization
accumulate beneath an impermeable layer that regulates fluid exchange between upper hydrostatic
and lower lithostatic systems. This study introduces a new perspective through a detailed
reconstruction of the stratigraphic-tectonic architecture of the CF area that enables identification of
structural controls on seismicity, deformation, and fluid migration, and the role of meteoric water.
Seismicity beneath the Pozzuoli-Solfatara area occurs at shallower depths near the top of an anticline,
whereas deeper earthquakes in Pozzuoli Bay occur in synclinal environments. The anticline beneath
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Pozzuol1 tacilitates hydrothermal fluid pressurization in two main reservoirs beneath two relatively
impermeable units. The shallow reservoir, referred to as Unit C, is located at a depth of approximately
1.0 to 2.0 km and acts as a reservoir for meteoric water infiltration. The deeper reservoir, referred to
as Unit A, occurs at a depth of about 2.0 and 4.0—4.5 km, where magmatic fluids generated by second
boiling in the underlying magma accumulate. An impermeable unit of marine sediments, referred to
as Unit B, is located at ~2 km depth and separates Units A and C. The shallow reservoir is bounded
at the top by a relatively impermeable unit mainly made up of pyroclastic deposits. We developed a
simplified hydrogeological model using rainfall data dating back to 1950 to assess the role of meteoric
water in bradyseism at CF. We found a strong correlation between subsurface water infiltration and
vertical ground deformation observed at the Pozzuoli RITE Station, which corresponds to the crest
of the anticline. Our results suggest that meteoric water contributes to interannual uplift fluctuations
of up to ~5 cm and accounts for over 20% of the total uplift recorded between 2005 and 2025.
Furthermore, a shortening of recharge time-lag — from about four years to three years since 2010 —
indicates enhanced fracturing and infiltration rates. These findings highlight the previously
underestimated role of meteoric water in driving deformation and seismicity at CF. Our results also
suggest that geoengineering involving targeted surface drainage interventions could mitigate ongoing
ground instability and seismic hazards in the region.

Keywords: Pozzuoli-Solfatara bradyseism; Anticline stratigraphic structure; Hydrological
model; Meteoric water infiltration; Pyroclastics.
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1. Introduction

The Campanian active volcanic region, encompassing the Campi Flegrei (CF) and the Somma-
Vesuvius complexes in the province of Naples (Italy), represents an area of considerable risk, as over
three million people are exposed to significant volcanic and seismic hazards (De Vivo and Rolandi,
2020; Carlino, 2021). Currently, CF is a major focus of concern due to accelerating ground uplift
since 2005. CF is under constant monitoring and extensive study and has been the subject of
numerous scientific investigations addressing its geochemical, geodetic, geological, seismological,
and structural characteristics. While there is no consensus regarding the causes of this phenomenon,
it is widely recognized that fluids within the geothermal system - of magmatic, marine, and/or
meteoric origin - play a critical role (e.g., Caprarelli et al., 1997; Bodnar et al., 2007; Caliro et al.,
2025).

Within CF, the Pozzuoli-Solfatara area has experienced the maximum uplift and most intense
seismic activity. This shallow seismicity could have a hydrological influence associated with a
decrease in the effective stress due to an increase in pore pressure that accompanies groundwater
recharge (Casertano et al., 1976; Bonafede and Mazzanti, 1997; Wang and Manga, 2021). Shallow
earthquake swarms at CF often exhibit relatively high b values in the Gutenberg-Richter scaling
relation logg N = a — bM, where N is the cumulative number of earthquakes greater than magnitude
M, and a and b are constants (Tramelli et al, 2024). High b values have been associated with pore
pressure, thermal gradients and matrix heterogeneity (Warren and Latham, 1970; Wyss, 1973;
Wiemer and McNutt, 1997). All of these factors may be significant at CF. Several studies have
attributed seasonal variations of seismicity in other volcanic areas to groundwater recharge (e.g., Saar
and Manga, 2003; Montgomery-Brown et al., 2019) via poroelastic effects. A correlation between
precipitation and earthquakes (e.g., Roth et al., 1992; Jimenez and Garcia-Fernandez, 2000; Hainzl
et al., 2006; Kraft et al., 2006; Husen et al., 2007) supports the idea that pore pressure changes caused
by recharge processes can influence seismicity. For example, at the edge of Long Valley caldera, in
California, large seasonal variations in precipitation occur, and seismicity rate is ~37 times greater
during spring snowmelt than during the driest period of the year (Montgomery-Brown et al., 2019).
At regional scales, changes in hydrological loading rate and induced pore pressure changes may
contribute to seasonal variations in seismicity (Ueda and Kato, 2019). Underground water
accumulation increases pore pressure, and can reduce the stability of existing faults, leading to both
ground uplift and earthquakes mostly in geothermal regions where heated fluids expand, amplifying
pressure, and contribute to ground uplift (Todesco, 2021). These phenomena are governed by the
interplay of hydrogeological, mechanical, and geophysical factors (Wang and Manga, 2021).

Relative to the surrounding regions, CF experiences higher precipitation rates, which also leads
to some exceptional flash floods (Fortelli et al., 2019). Morphologically, the CF region is
characterized by numerous volcanic vents, such as the Astroni, upstream of the Solfatara area, that,
as first hypothesized by Scafetta and Mazzarella (2021), could act as a funnel collecting large
volumes of rainwater that can readily infiltrate the subsurface of the CF hydrothermal system through
extensive fracturing in the upper 3 km (Cipriani et al., 2008), likely contributing to the surface uplift.

Although rainfall, atmospheric pressure variations and tidal oceanic loading have been posited as
factors influencing seismic and volcanic activity (Mazzarella and Palumbo, 1989; Mastin, 1993;
Farquharson and Amelung, 2020), these aspects have received relatively little attention at CF.
Nevertheless, some studies have linked rainfall and tidal patterns to local seismicity recorded during
the moderate uplift phases of bradyseism unrest between 2008 and 2020 (Petrosino et al., 2018;
Scafetta and Mazzarella, 2021). Earlier epochs of uplift and increased concurrent seismic activity in
1970 and 1982 were preceded by anomalously large increases in oceanic loading and rainfall,
although Palumbo (1985) could not clearly separate the rainfall and oceanic loading effects. The
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observation that periods ot active uplift correlate with small changes 1n stress due to solar-lunar tidal
effects (oceanic loading) and rainfall going back over a half-century indicates that the state of stress
at depth is sensitive to relatively weak external forces and does not require the addition of new
magma. However, the thermal engine that ultimately drives the CF hydrothermal-magmatic
supersystem should not be neglected. Indeed, since the pioneering work by De Vivo and Lima (2006)
up to the most recent study by Lima et al. (2025a, and reference therein), it was shown that the
ultimate heat engine that drives bradyseism at CF must be the deep magmatic system at >7.5 km
depth. The extent of fracturing does not represent competition between fluid escape and injection
rates because the release of magmatic fluid and upward transport of magmatic heat is continuous over
time. Instead, the differential expansion of rock and pore fluid due to heating gives rise to poroelastic
effects (Detournay and Cheng, 1993) including fluid migration and fracture propagation. Without the
thermal effects of the magmatic engine these effects would not occur.

The aim of this study is to assess whether and how rainwater infiltration on interannual to
multidecadal timescales contributes to bradyseism in the CF. To achieve this goal, we developed a
schematic-conceptual model to simulate groundwater recharge as a function of the local precipitation
record and its hypothesized discharge to the sea. For this reason, it was also necessary to reconstruct
the CF stratigraphic and structural architecture to highlight the impermeable and permeable units
along with their distribution within the CF system. More specifically, first we constructed a schematic
hydrological model related to the complex stratigraphy underlying the CF area and identified the
recharge areas in CF in relationship to areas experiencing seismic activity and bradyseism. Then, we
adopted a realistic - albeit simplified - hydrogeological model to dynamically evaluate the recharge
level of the reservoir beneath Pozzuoli and its temporal variation in response to the local rainfall
record since 1950. An inverse approach, required by the hydrological model, is adopted to determine
the hydraulic conductivity of the reconstructed strata in the CF area. Developing a physics-based
reductionist approach in which all known physical processes are considered to compute the output is
impractical due to the excessive number of unknowns.

2. Overview and history of bradyseism in the Campi Flegrei volcanic system

2.1. Geologic framework of the CF area

The CF volcanic system is located along the coast of the Campanian Plain, on the eastern margin of
the Tyrrhenian Sea where the most recent back-arc extensional basins developed (Fig. 1a).

Some authors have attempted to reconstruct the CF stratigraphic pattern through seismic
tomography and magnetotelluric data interpretation (e.g., De Landro et al., 2025; Isaia et al., 2025);
however, in our view, such data remain insufficient to provide a detailed understanding of the area's
stratigraphic and tectonic architecture. Reconstruction of the stratigraphic architecture and the
structural framework is a fundamental first step to constrain the lateral and vertical extents of
impermeable strata, and the permeability characteristics of the various stratigraphic units. To achieve
this goal, because CF stratigraphy is the result of the interplay between tectonics, sediment supply
and volcanic activity, we consider the evolution of the Campanian Margin (Fig. 1b) starting from the
Lower Pleistocene when the first clastic sediments covered the Meso-Cenozoic substrate. In
particular, three first-order tectonic events took place during this period (Milia and Torrente, 2020).
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The earliest tectonic event 1s represented by the eastward opening ot the Vavilov back-arc basin
(Fig. 1a). The initial event led to the formation of the Lower Pleistocene NW-trending normal faults,
which affected the exposed Apennine chain, and created symmetrical basins (e.g., the Sorrento
graben; Milia and Torrente, 1997). Unit A (Fig. 1¢), consisting of a sedimentary succession ranging
from continental to shallow marine environments, was deposited during this stage (Milia and
Torrente, 1999, 2015a, 2015b; Milia et al., 2003). These deposits, dated to 1 Ma, have been
documented in the Trecase and Cancello boreholes, located northwest and southeast of the CF,
respectively, and in outcrops along the margin of the Campanian Plain (Bernasconi et al., 1981;
Brocchini et al., 2001; Milia and Torrente, 2015; Cerrone et al., 2021).

The second tectonic event corresponds to the extension toward the southeast of the Campanian
Margin. This event led to the formation of Middle Pleistocene NE-trending normal faults, generating
asymmetric grabens — most notably the Naples Bay—CF half graben (Fig. 1c). During this stage,
Unit B (0.7 — 0.4 Ma) was deposited. This period marked both the uplift of the Sorrento Peninsula
and the rapid subsidence of the CF basin, corresponding to the deposition of a relatively thin strata
of deep-water environment sediments (Milia and Torrente, 1999). These deposits (Unit B, Fig. 1c)
consist of clay-rich lithologies forming a transgressive unit that blankets the basin and were identified
in the Trecase, Mofete, and S. Vito boreholes (Rosi and Sbrana, 1987; Brocchini et al., 2001; Marini
et al., 2025). Subsequently, the half graben was infilled by a thick regressive unit — Unit C (Milia,
and Torrente, 1999) — made up of three substantial lowstand prograding wedges. Unit C (Fig. 1c¢),
dated between approximately 0.4 Ma and 0.1 Ma, consists of silt, sand, and conglomerate. During
this phase, numerous volcanic products, primarily composed of lava, were interlayered within the
stratigraphic succession. These have been documented in the Trecase borehole (Brocchini et al.,
2001), in the southern Gaeta Bay offshore region and in the Mofete boreholes (Rosi and Sbrana,
1987), and in the Penta Palummo (PP) area shown in Fig. 1b (Milia et al., 2006).

The third tectonic event relates to a change in the direction of extension along the margin towards
the east-southeast (Fig. la, 1b). This event, which shaped the current structural configuration,
occurred over the past 0.1 Ma and is associated with major ignimbrite eruptions along the Campanian
Margin (De Vivo et al, 2001; Rolandi et al., 2003). For the first time, the continental shelf of Naples
Bay and the Campanian Plain recorded simultaneous activity of normal faulting and ignimbrite
volcanism (Milia, 2000; De Vivo et al., 2001; Torrente et al., 2010). As a result of this tectonic event,
pre-existing NW-NE trending normal faults were reactivated, and thick ignimbrite wedges
accumulated along the Campanian Margin — Unit D in Fig. 1c (Milia and Torrente, 2011, 2020). In
the last 14 ka (post-Neapolitan Yellow Tuff), an intricate fault system developed, producing localized
transpressional tectonics. This tectonic style led to a local compression within the CF area and the
formation of a detachment fold, whose anticline culminates beneath the city of Pozzuoli (Fig. 2a;
Milia and Torrente, 2000). The folding extends from the Epitaffio Valley, west of Pozzuoli, to the
Bagnoli area (Milia et al., 2000; Milia and Giordano, 2002). Fig. 2c illustrates the eastern flank of the
syncline and Fig. 2d shows the faulted and folded strata offshore the city of Pozzuoli. The Solfatara
volcano (ca. 4 ka) (Fig. 2b), located on the crest of the anticline, is a maar/diatreme structure that
formed through phreato-magmatic processes, with faults extending to depths of approximately 2-3
km (Cipriani et al., 2008; Marini et al., 2022). Its structural configuration can be interpreted as being
linked to opening fractures/faults commonly associated with crestal anticline settings associated with
a tangential-longitudinal strain mechanism (Ramsey, 1967).

2.2. Bradyseismic activity at Campi Flegrei
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'The penultimate period ot signiticant volcanic activity in CkF occurred between about 5500 and 3500
years ago, during which numerous eruptions took place with the formation of several eruptive centers
including on the eastern side of CF at Agnano-Monte Spina, Astroni and Solfatara (Fig. 2b) (Orsi et
al., 2009). In 1538 the Monte Nuovo eruption occurred; this is the only historic eruption known to
have been preceded by significant ground uplift. In the years preceding the Monte Nuovo eruption
about 7 m asl of ground uplift was reported (Rolandi et al., 2025) in a small area including the vent.
Following the 1538 eruption, a subsidence phase began and persisted until 1950, at which point an
uplift phase occurred from 1950 to 1952 (Rolandi et al., 2025). Subsequent uplift episodes were
recorded from 1969 to 1972 and 1982 to 1984. The 1982-1984 bradyseism event, the most
extensively studied, resulted in an uplift of 186 cm that was accompanied by low-magnitude seismic
swarms (maximum M =4.0), with up to 610 seismic events occurring within a few hours (Del Gaudio
etal., 2010). After 1984, a period of subsidence ensued, lasting approximately 20 years at an average
rate of ~4 cm/year, culminating in a total subsidence of ~93 cm. During this subsidence phase, short
episodes of mini uplift, lasting a few months, were observed in 1989, 1994, 2000, and again during
2012-2013, coinciding with the slow uplift phase that began in 2005 (Fig. 3) (Orsi, 2022). This
accelerating uplift phase, ongoing to the present day, is a source of concern due to intensified seismic
activity, including a M = 4.6 event that occurred on March 13, 2025, at a depth of 2.5 km below the
seafloor in front of “Localita la Pietra” in Bagnoli and east of Solfatara along the main fault (Figs. 2
and 4). The Osservatorio Vesuviano - Istituto Nazionale di Geofisica e Vulcanologia (OV-INGV)
reported that the waveform for the latter event consists of two earthquake signals whose first arrivals
occur in very rapid sequence (OV-INGV Surveillance Bulletins, March 2025). In addition, increasing
fluid emission and fumarolic tremor amplitude, which is indicative of hydrothermal activity, were
registered along with uplift of about 1.5 m from January 2005 to September 2025 in the Pozzuoli area
(cf. Chiodini et al., 2017).

2.3. A model to explain CF bradyseism

The hydrothermal model to describe bradyseism and ground deformation at CF is based on research
by the current authors over the past several decades and summarized by De Vivo and Lima (2006),
Bodnar et al. (2007), De Vivo et al. (2009), Cannatelli et al. (2020), and Lima et al. (2009, 2021,
2025a). Our model proposes that the fundamental driver of bradyseism at CF is the magmatic system
located at depths greater than 7.5 km (Fig. 4). During crystallization, the magma becomes volatile
(H,0, CO,) saturated and releases magmatic fluid that accumulates beneath an impermeable cap that
occasionally fractures, allowing the magmatic fluids to migrate upwards. Upward migrating
magmatic fluids accumulate in Unit A beneath the impermeable Unit B (Fig. 4), which episodically
fractures in response to the increased fluid pressure and allows magmatic fluids to migrate upward
into Unit C, which also acts as a fluid reservoir. Here, magmatic fluids mix with marine and meteoric
water (Caprarelli et al., 1997; Caliro et al., 2025). Bradyseism is primarily driven by the transient
connection between reservoirs hosted in Units A and C, mediated by impermeable Unit B. Recently,
Mantiloni et al. (2025) validated their analytical poroelastic solutions with Finite Element models,
then used them as initial conditions to study surface displacement and pore pressure/stress changes
from fluid flow between porous layers with different regimes. The episodic connection and
disconnection between deeper and shallow reservoirs are sufficient to drive the ‘breathing’ mode. In
Lima et al. (2025a and references therein) model, two processes operate on distinct and different
timescales. The longer timescale, on the order of 10°—10° years, is associated with magma cooling,
solidification and production of lithostatically-pressured fluids, during which the brittle-ductile
transition migrates to greater depths (see fig. 3 in Lima et al., 2025b). The shorter timescale, ranging
from 1 to 10? years, is episodic in nature and linked to fluid migration and transient fracture
propagation aided by increasing effective stress within the impermeable Unit B. Ground deformation
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and seismicity are thus driven by tluid pressurization in the underlying reservoir leading to uplitt,
with subsidence caused by fluid depressurization following brittle failure and enhanced fracture
permeability that allows the trapped overpressured fluids to escape and migrate upwards. The closing
of the system occurs mostly by mineral deposition and relaxation after pressure release that closes
the fractures and locally decreases permeability. So far, no model, including one recently proposed
by Vanorio et al., 2025, has been able to explain the so-called mini events (Fig. 3) represented by
interannual fluctuations that occur both during the multidecadal subsidence and uplift phases. An
explanation of these neglected mini-events is one of the goals of this study: the correlation of these
mini-events with the record of rainfall and aquifer recharge.

3. Subsurface geology at CF: origin of the earthquakes and fluid circulation

A fundamental step for reconstructing the fluid circulation in the CF region consists in characterizing
the location and lateral extent of the relatively permeable and impermeable stratigraphic successions
and the structures, folds and faults, in the area of interest. The east—west geological section across the
CF region (Fig. 4) allows the identification of the main geological units that characterize the area,
which are described below from bottom to top. A melting zone, affecting both the crystalline
basement and the carbonates of the faulted Apennine thrust belt units (indicated as the substrate in
Figs. Ic and 4) is covered by an irregular impermeable zone (carapace), formed by crystallized
magma.

The substrate is covered by Unit A. The lower boundary of Unit A is an irregular surface, with a
shape similar to the top of the carbonate unit outcropping along the Sorrento Peninsula, as confirmed
by tomographic data showing seismic velocities exceeding 5 km/s at approximately 4 km depth (De
Landro et al., 2025). Indeed, the thickness of Unit A is controlled by the Lower Pleistocene faults,
forming a graben in the central part of CF, as shown in Fig. 4a. This structure corresponds to the
NW-oriented grabens, such as those that crop out on the Sorrento Peninsula and the one that is buried
in the northern Campanian Plain (Fig. 1). Unit A consists of continental and shallow-water
sedimentary deposits that reach a thickness of 1.5 km based on Trecase and Cancello boreholes and
is comprised of a succession of sands and silts interlayered by conglomerates and mudstone and acts
as a permeable fluid reservoir (Fig. 4b).

A relatively thin clay-rich Unit B lies above Unit A, forming an impermeable unit with a large
regional extent. Seismic lines located on the eastern margin of the Penta Palummo (PP, Fig. 1b) area
support this interpretation. Fig. 5b shows a north—south multichannel seismic reflection profile that
crosses an area where the pyroclastic deposits are absent (Fig. 5a). The interpretation of the profile,
based on cross-correlation of densely spaced seismic profiles acquired in Naples Bay (e.g. Milia and
Torrente, 2011), reveals a high amplitude, low frequency and continuous reflector corresponding to
Unit B, between Unit A and the overlying Unit C. The seismic section (Fig. 5b) shows continuous
parallel reflectors for Unit C, whereas Unit A is marked by continuous parallel reflectors in the
southern part and by scattered high-amplitude reflectors towards the north. This latter seismic facies
suggests the presence of fluids in the sediments. Since these facies are confined to Unit A, it
demonstrates that Unit A is a fluid reservoir sealed by Unit B which prevents the upward migration
of the fluids. This interpretation is supported by the findings in the Mofete 5 borehole that identified
two aquifers at depths of 1600—-1960 m and 2310-2699 m, separated by the impermeable layer
corresponding to Unit B (Mf5, Figs. 2a and 4) and by the presence of an aquifer in the CF23 borehole
at depths of 1445-1712 m (Fig. 4; Carella and Guglieminetti, 1983; AGIP, 1987).
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Unit C 1S a regressive marine succession composed mainly of silts and sands, with interbedded
lavas and volcanic deposits related to the earliest volcanism along the Campanian Margin. Due to its
lithological characteristics, Unit C corresponds to a relative permeable unit (Reservoir C, Fig. 4).

A relatively thick pyroclastic unit, Unit D, overlies Unit C in the Pozzuoli area and corresponds
to the pyroclastic, ignimbrites and volcanoclastics deposited over the last 100 ka (e.g. Milia and
Torrente, 2011). This unit is characterized by low permeability due to welding, grain size variability,
and post-depositional alteration and mineralization and can be considered a relatively impermeable
unit. The pyroclastic unit presents a wedge external form, thickening toward the north, where it
reaches a depth of approximately 2.5 km in the S. Vito borehole (Fig. 1¢), and pinches out toward the
west (Fig. 4). It is important to note that the lower boundary of the pyroclastic Unit D varies from
about 2.5 km in the San Vito borehole to about 1 km below Pozzuoli, to about 0.5 km in the middle
of Pozzuoli Bay, and disappears (or is present only in thicknesses of a few meters or as tephra) west
of Pozzuoli (Milia and Torrente, 2011). Consequently, Reservoir C is only bounded upward by an
impermeable unit where the pyroclastic wedge is present, thus representing a localized reservoir. This
wedge architecture and the deepening of the base toward the faults (Fig. Ic) reflects the late
Quaternary syn-ignimbrite fault activity (Milia, 2000; Milia and Torrente, 2011). The uppermost part
of the succession comprises the younger Neapolitan Yellow Tuff deposits and alluvial sediments
onshore, and marine silts and sands in Pozzuoli Bay (Fig. 4).

In areas where Unit D is absent, fluids circulating in Unit C can migrate upward to the sea floor,
forming pockmarks as shown in Figs. 4 and 5c. The seismic section of Fig. 5c illustrates vertical
features with transparent facies at depth terminating at the seafloor as chaotic facies and irregular
topography, these features are characteristic of fluid migration pathways.

From the tectonic point of view, over the last 8 ka the CF/Pozzuoli Bay area has been
characterized by active tectonics. In particular, the architecture of the sedimentary succession
revealed a major fold, with an anticlinal culmination beneath Pozzuoli and a syncline beneath
Pozzuoli Bay, formed in response to a local transpressive deformation (Milia and Torrente, 2000;
2003). The folding reflects positive inversion tectonics due to the reactivation of pre-existing normal
faults. During tangential-longitudinal strain folding, extensional faults and fractures form along the
anticline crest and syncline troughs to accommodate the tectonic deformation (Figs. 2d, 6b; Ramsay,
1967).

The Solfatara structure is a maar/diatreme system formed during a phreatic eruption ~4 ka ago,
with faulting extending to ~2 km depth (Cipriani et al., 2008; Marini et al., 2022). This area exhibits
intense faulting aligned with regional tectonic trends (e.g. Bruno et al., 2007). The highly fractured
zone between Solfatara and Pozzuoli, particularly the diatreme itself, can be interpreted as a crestal
collapsed structure atop the anticline (Figs. 4 and 6c).

The distribution of earthquakes is consistent with the reconstructed structure. Indeed, the
earthquakes are concentrated at about 1-2 km depth beneath the anticline, while deeper events
offshore lie between 2—4 km beneath the syncline (Figs. 4 and 6a) (cf. Tan et al., 2025). Seismicity
is linked to ongoing folding, with fractures developing both above and below the neutral surface of
the fold (Fig. 6b and 6¢) (Ramsay, 1967) and in association with tectonic faults. Numerous micro-
earthquakes affect the area (Fig. 6) especially in the intermediate zone between the anticline and
syncline between depths of 1-2 km and upward in the Pozzuoli/Solfatara area. These micro-
earthquakes can be attributed to the fractures generated by the fluid overpressure in Reservoir C and
in the hinge zone of the anticline. Furthermore, according to the development of an inversion tectonic
structure in a local transpressive regime, the focal mechanisms show transcurrent and oblique motion
along faults-oriented NW, SE, NE, SW, EW, and NS, and the coexistence normal and reverse faulting
(Milia and Torrente, 2003; Natale et al., 2024; Tan et al., 2025).
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‘The reconstruction of stratigraphic and structural teatures, as 1llustrated 1n the geologic section
shown in Fig. 4, is used for reconstructing the fluid circulation system, as illustrated in Fig. 4b. From
the stratigraphic perspective, we can identify two relatively first-order impermeable levels: (1) Unit
B, extending over the entire Campanian Margin at a depth of approximately 2 km in the Pozzuoli
area; and (2) the pyroclastic units (Unit D), with a limited extension, at a depth of 0.5—1 km in the
Pozzuoli area and thins to the west and terminates in Pozzuoli Bay. Two thick reservoirs are present
between the impermeable units. Under Pozzuoli city, Unit A represents the reservoir for the fluids
released from the deeper crystallizing magma and is separated from overlying units by impermeable
Unit B. Unit A is subject to overpressure conditions until Unit B fractures, allowing fluids to escape
upwards (Lima et al., 2025a, and references therein). The shallower Unit C represents a meteoric
fluid reservoir and is present only where it is overlain by the pyroclastic wedge. A large-scale fracture
permeability affects the area and allows fluids from Reservoir A to migrate upwards to Reservoir C,
where the fluids mix and eventually escape to the surface in the Solfatara/Pisciarelli area along
localized tectonic faults.

The reconstructed water circulation model (Fig. 4b) indicates that meteoric water falling on the
CF accumulates under the Pozzuoli-Solfatara area. On the western side, under Pozzuoli Bay, sea
water mixes with underground fluids, migrating both laterally and vertically, forming pockmarks on
the flanks of the syncline in Pozzuoli Bay where the fluids reach the seafloor (Fig. 4). Mixed fluids
(meteoric, marine, and magmatic) from different depths migrate upward through the fractures at
Solfatara, as reported by several studies (Caprarelli et al., 1997; Caliro et al., 2025). The fluid
circulation pattern illustrated in Figure 4b is consistent with the isotherm reconstruction proposed by
Petrillo et al. (2013). In the western portion of the section, the isotherms descend into the basin,
indicating lower temperatures compared to the eastern sector near the Pozzuoli-Solfatara area. Here,
the isotherms rise, reflecting higher temperatures along the interface between Unit C and Unit B. The
influx of cold meteoric fluids from inland areas into Unit C, combined with the influence of seawater
in the bay, where Unit D is absent, causes the isotherms to be depressed to greater depths. Conversely,
the ascent of hot fluids along major fracture zones, particularly along faults that extend to great depth
near the top of the anticline, results in a sharp upward deflection of the isotherms (Fig. 4b).

4. Model to evaluate rainwater accumulation

At CF, rainwater can infiltrate into the subsurface through intense fracturing and is likely to
accumulate primarily within Unit C. This accumulation increases both underground pore pressure
and the pressure generated by the convective movement of hot water and pressurized water rising
through the system. These pressures reduce the effective stress that binds the rocks together,
potentially allowing for ground movement and uplift of the overlying surface.

The magnitude of this uplift depends on three main factors: (1) the volume of infiltrated water;
(2) the compressibility and poroelastic properties of the surrounding rocks; (3) the magnitude of
lithostatic confined pressure beneath the impermeable layer.

Geothermal activity can amplify the uplift through thermo-poroelastic effects. The resulting
increase in pore pressure and ground deformation may induce earthquakes via two primary
mechanisms: (1) When pore pressure surpasses the tensile strength of the rock, new fractures can
form, releasing stress suddenly and generating small earthquakes; (2) Elevated pore pressure can
reduce frictional resistance along pre-existing faults. This process — known as fault reactivation —
can destabilize critically stressed faults and cause sudden slips that trigger earthquakes, especially in
zones with significant water infiltration (Casertano et al., 1976; Bonafede and Mazzanti, 1997,
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Siniscalchi et al., 2019; Guerriero and Mazzoli, 2021, and reterences therein; Wang and Manga,
2021).

Rainwater at CF discharges through surface runoff, evaporation, and underground percolation,
eventually reaching the sea. Figure 4b shows a geologic section across Campi Flegrei—Pozzuoli Bay,
illustrating meteoric water circulation. It also shows the modelled subsurface path and accumulation
of rainwater within Reservoir C (see section 2.1).

We hypothesize that rainwater falling more than 6 km from Rione Terra does not contribute to
the aquifers beneath Pozzuoli, as it is likely diverted by the main fault encircling CF (Fig. 2a). Several
highly fractured areas within CF, such as the Astroni crater (Fig. 2b and Fig. 4), may serve as major
recharge areas. Tectonic or seismic activity can alter these fractures — sealing or opening them —
and consequently modulate water recharge and discharge rates. A reduction in these rates leads to a
change in meteoric water accumulation in Reservoir C (Fig. 4). In addition, groundwater infiltration
is also influenced by variations in rainfall intensity. The seawater contribution is considered
approximately constant.

The aim of our model is to determine whether interannual to multidecadal changes in rainfall
amounts are correlated with the vertical surface displacements observed in the uplift zone centered
around Pozzuoli (GNSS Rite Station). Detecting a correlation across multiple timescales (cf. Scafetta
et al.,, 2004) between the uplift and rainwater accumulation would suggest that the impermeable
stratum Unit D is affected by pressure changes due to: (1) vertical movement of the deeper Unit B
pushed upward by inflation of Reservoir A, as already suggested in Lima et al. (2025, and references
therein); (2) expansion of Reservoir C (region Eb in Fig. 4) where meteoric water can accumulate in
the region above the anticlinal structure (Fig. 6).

4.1. Inverse approach to assess the local hydraulic conductivity

The creation of a hydrogeological model requires knowledge of the hydraulic conductivity of the
strata in the CF area. This knowledge is not known a priori. In fact, envisioning a physics-based
reductionist approach in which all known physical processes are considered to compute an output, is
impractical due to the excessive number of unknowns.

The conversion of hydraulic conductivity (K) to the intrinsic permeability (k), a property of the
rock matrix independent of the fluid properties and dynamics, depends on the saturation level of the
medium as well as the dynamic viscosity and density of the fluid occupying the pore (or fracture)

network. For a fluid saturated medium K = %k. For water near the surface, the factor converting

intrinsic permeability to the hydraulic conductivity is = 9.1x1078 However, under more realistic
hydrothermal conditions, for example 350 °C and about 70 MPa (700 bars) at a depth ~ 3 km, the

. n. . .
ratio 7" is a factor of 7 larger compared to shallow groundwater. However, in our case, the lithology

of the area is highly fractured and, therefore, it is not possible to derive the hydraulic conductivity
from general hydrothermal conditions. Hence the use of hydraulic conductivity provides a mean-field
description that includes variations in fluid properties and medium anisotropy and heterogeneity (e.g.,
dependence of k on depth and lithology), which could be eventually used to find an effective intrinsic
permeability (Bear, 1972).

The construction of an empirically based hydrogeological model starts by examining the data. It
is observed that both the rainfall record and the ground vertical displacement record exhibit
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signiticant interannual tluctuations that appear to be correlated with a time lag ot a tew years. Based
on this observation, it is hypothesized that rainwater falling on CF infiltrates in an underground core
reservoir located under Pozzuoli and affects the vertical movement. Since the hydraulic conductivity
of the ground is a free parameter of our model, the hydraulic conductivity value is randomly varied
within a range of values that the literature considers realistic for highly fractured igneous and
metamorphic rocks (Freeze and Cherry, 1979) until a reasonable single value is found that could
replicate the observed time lag between the interannual fluctuation observed in the rainfall record and
in the ground vertical displacement record. We notice that the hydraulic conductivity, which is a
velocity, depends on other parameters such as the intrinsic permeability, the viscosity, the fluid
density and the temperature. However, for our purpose we ignore this complexity and simply estimate
a reasonable hydraulic conductivity derived empirically from the observations.

In this way, the modeling automatically accounts for the observed time lag between rainfall and
underground recharge, as water percolates through fractured upper crust of variable lithology to reach
the reservoir under Pozzuoli. This enables a comparison between the rainfall record and the vertical
ground movement in Pozzuoli since 1985, allowing us to examine whether the small interannual
fluctuations (mini ups and downs), along with decadal and longer modulations of the two signals, can
be correlated.

A double correlation observed at both interannual, and longer time scales provides stronger
evidence that rainwater contributes to vertical ground movement, offering in addition a reasonable
quantitative estimate — at least a lower bound — of this contribution and shedding light on the
possible dynamics of the process. With the help of the model, it is possible to show that the higher
limit depends on the drainage time scale of groundwater from the core reservoir (in Unit C) to the sea

(Fig. 4).

4.2. Rainfall data

The proposed model uses the average daily precipitation dataset from ERAS5 (Hersbach et al., 2020)
to estimate rainfall over the CF region. Specifically, we sourced the daily dataset of rainfall reported
in mm/day labeled “ERAS 1950-now 0.25° Europe” from the KNMI Climate Explorer (available at
https://climexp.knmi.nl/, accessed on April 8, 2025). The ERAS precipitation records are estimated
averages provided on a 0.25° x 0.25° grid. Consequently, we focused on the area bounded by
longitudes 13.875°E — 14.375°E and latitudes 40.625°N — 41.125°N, centered at 14.125°E —
40.875°N. This selected region closely encompasses Rione Terra in Pozzuoli (approximately 14.12°E,
40.82°N), the site of the GNSS station Rite operated by the OV-INGV. Notably, this location
corresponds to the CF area of maximum ground deformation and uplift.

The data of vertical displacements at GNSS Rite Station located in Rione Terra in Pozzuoli and
depicted in Fig. 3 are taken from the Bulletins of the OV-INGV
(https://www.ov.ingv.it/index.php/monitoraggio-e-infrastrutture/bollettini-tutti/boll-sett-flegrei) and
from the supplementary of Bevilacqua et al. (2024).

4.3. Model
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This section presents a mathematical tramework for a hydrogeological model describing the
dynamics of the underground rainwater percolation system beneath CF (Fig. 4). For this purpose, the
surface inside the CF area has been divided into three concentric areas (Fig. 2b). We did not consider
regional contributions because the tectonic structure of the CF caldera should be mostly bypassed by
external flows (Fig. 2a). The model postulates that the vertical displacement observed at Rite Station,
which is the area with the highest unrest, situated in Rione Terra, results from two distinct
components:

Hgic(t) = Hg(t) + Hc(t) (1)

where Hg(t) represents the vertical displacement of the deeper Unit B, located approximately 2 km
below the surface, and H(t) denotes the vertical enlargement of the more superficial Unit C, situated
at a depth of approximately 1c2 km between Unit B and the impermeable Unit D. Unit B plays two
roles in this process. On the one hand, it prevents deeper fluids from Unit A from continuously rising
upwards to more shallow depths, and on the other hand it prevents meteoric water from migrating
downward into the deeper parts of the CF system.

The expansion of Unit C is primarily attributed to meteoric water accumulation, which
predominantly varies with the volume of meteoric water falling over the CF region minus the
discharge. Conversely, the vertical displacement of Unit B is assumed to be influenced by variations
in the deep lithostatic pressure as explained by the magmatic hydrothermal model of Lima et al.
(2025a, and references therein).

The schematic model presented below integrates the influences of precipitation, percolation, and
flow dynamics within a hypothesized system of concentric buffers centered at Rione Terra, the point
of maximum soil uplift in Pozzuoli (Fig. 2a and 2b). These processes are hypothesized to modulate H
(t). Note that Hg(t) cannot be independently quantified by our model, as the factors driving its
dynamics remain unknown. Likely, H(t) mostly determines the low amplitude and high frequency
component of Hg, ¢(t), whereas Hg(t) may be responsible for the high amplitude and low frequency
component of the vertical displacement observed at Rite Station (Rione Terra, Pozzuoli). However,
some couplings may also be possible. Consequently, we infer various scenarios by analyzing and
comparing the dynamical patterns of vertical displacements recorded at the Rite Station alongside
variations in water accumulation developing in Unit C, estimated through rainwater amount changes
resulting from variations in precipitation temporal patterns.

The region is conceptually divided into three concentric buffers, defined by radii Ry, R and R,
by taking into consideration only the land side (Fig. 2b).

Thus, the proposed model speculates three ideal buffers derived from the CF tectonic geometry
and its faults (Figs. 2a and 4) that regulate the meteoric water infiltration falling on the region. This
geometry is inspired by the observation that (1) the CF area has a radius of about 6 km from Pozzuoli
(second buffer), (2) the vertical ground movement is maximum around Pozzuoli in the center of the
circles shown in Fig. 2b (model core) and (3) that the maximum fracturing of the ground occurs
within 3 km from Pozzuoli (first buffer) where the highest seismic activity occurs (Figs. 2a and 6a).
We verified that the model’s results are not significantly influenced by these assumptions.
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Model core: This core 1s assumed to be located beneath Rione Terra at a depth h between | and 2
km and with a radius of Ry = 1 km. This core receives most of the meteoric water falling over the
area within the ring faults at 6 km radius, leading to maximum ground deformation. Water from this
core can only be discharged mostly into the sea over a time scale 7(t), which varies based on the
permeability by fractures that could be influenced by very slow deformation associated with local
tectonic activity as previously discussed.

First water buffer: The model core is surrounded by the first buffer extending to a radius R; = 3
km, including the highly fractured Solfatara area (Fig. 2b). This highly fractured area allows meteoric
water to rapidly percolate and rapidly reach the model core at speed V; (t) that may vary with seismic
activity.

Second water buffer: This is the external buffer with a radius of R, = 6 km (Fig. 2b). This area is
less fractured than the first two as we consider only the on-land side, resulting in a slower percolation
rate, V,(t).

For this hypothesized model, it is assumed that rainfall is uniformly distributed across the entire
region. The infiltration speeds V() andV,(f) may change over time because the area is seismically
active, and the faults may evolve by changing the rate at which the water may infiltrate. Besides this
dynamic, we assume that the infiltration rates represent an average speed in each area without, for
example, differentiating between horizontal and vertical movement, which are expected to be
characterized by different hydraulic conductivity values. Finally, upon reaching the model core, the
water can only be discharged mostly into the sea with a time scale (t(t)), which can again vary over
time because of the seismic activity of the area.

4.4. Rainfall contributions

The surface extension areas where rainwater falls of the three buffers are:

Acore = TR z
Aﬁrst buffer = TR % — R é (2)
Asecond buffer — TR 2 T[Rl

Rainfall contributes to water inflow in the model core as follows.
4.4.1 Rainfall directly over the model core

Rainfall directly above the area A infiltrates vertically through the ground with a delay:
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tdelay,core = #Ef) (3)

where 4 is the depth between 1 and 2 km. The daily contribution at time ¢ to the core’s water volume
from this area is:

Vrain,core(t) = %P(t - tdelay,core) “Acore (4)

where: P(t) is the rainfall rate and A, is the central area of the core (R3). The factor 1/2 is adopted
because, according to the satellite photo of Fig. 2b about half of the area is covered by the sea. The
assumption is completed by considering that only a fraction o, generally less than 20%, of the
rainwater infiltrates. This fraction may vary over the entire region and, especially over the downtown
area of Pozzuoli, may be rather low because the surface is mostly paved. However, in our simplified
model we assume that the percolation fraction a is constant over the entire region. In this way the
fraction « is just a multiplicative factor that can be normalized out. We notice that even if the
rainwater contribution from the inner core, which mostly corresponds to the downtown of Pozzuoli,
is ignored (o = 0) the result of our model would change by less than 3% because the area 4. is only
3% of the entire considered surface.

4.4.2. Rainfall over the first buffer

Rainfall over the first buffer area contributes to the model core through a percolation pathway, which
is supposed to be linear for simplicity. The delay is:

taeirs = [ (72)” + (725 5)

where r is the radial distance from the center. The corresponding daily contribution at time 7 to the
core’s water volume from this area is:

R
Vrain,ﬁrst(t) = %fRol P (t - tdelay,ﬁrst(r)) - 2mrdr (6)

The factor 1/2 is again adopted because, according to the satellite photograph of the area (Fig.
2b) about half of the area is covered by the sea, and all water falling on the surface of this buffer is
assumed to percolate towards the core.
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4.4.3. Raintall over the second butter

Rainfall over the second buffer flows linearly towards the first buffer and then continues to flow
towards the model core. The depth at which water reaches R is:

T—Rl

hpartial =h-

(7

The total delay is:

2 2 2 2
— r—R; hpanial Ry h_hpartial
ttotal,second(r) - \/(Vz(t)) + (Vz(t)) + \/(Vl(t)) + ( V1(0) ) (8)
The daily contribution of rainwater at time ¢ to the model core from this area is:
R .
Vrain,second(t) = % lez P (t 4 ttotal,second(r)) ' 4arcsm(R1/r) rdr (9)

Eq. (9) assumes again the factor of 1/2 for the same reasons of above, but in addition it is assumed
that only a portion of the meteoric water precipitating in this second area converges toward the model
core. This portion decreases with the distance from the model core center as the arcsine function.
Note that for r = R4, 4arcsin(R/r) = 2m as in Eq. (6).

4.5 Water flow dynamics

4.5.1. Total inflow to the model core

The total daily inflow to the model core is the sum of the contributions across the three regions:
Qin(t) = Vrain,core(t) + Vrain,ﬁrst(t) + Vrain,second(t) (10)

4.5.2. Outflow from the model core
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The daily water outtlow trom the model core mostly through the fractures, 1s proportional to its
accumulated water volume as

__ Volumeoe(t)
Qou(t) = —— 7 (1D

where 7(t) is the drainage timescale. For example, when the underground water more easily
percolates through fractures, t is smaller, while when the discharge is lowered by sealing of the
fractures, 7 is larger.

4.5.3. Water volume at the model core and its vertical displacement

The water volume in the model core changes dynamically as

dVolume g
Lo = Qin(t) — Qoue(®) (12)

The water level in the model core, which is assumed responsible for some of the ground vertical
movement, is proportional to

1 m core
He(t) = Volumecore (t) (13)

ACOTE

The equations delineate the mechanisms governing precipitation, percolation, and water flow within
the considered CF area (Fig. 2b), which is made of two buffers at R; and R, characterized by different
percolation speeds. This schematic model forms the basis for the subsequent numerical simulations.

5. Data analysis and empirical modeling

Figures 7a and 7b depict the daily rainfall measurements across CF since 1970, and their cumulative
totals for each 1-year period. The multi-year smooth orange curve - obtained with the MATLAB
function smooth, with Localized Scatterplot Smoothing (LOESS) = 0.2, which approximately
corresponds to a moving average of 4 years - presented in Fig. 6b indicates a decline in annual rainfall
from approximately 1300 mm/year in the 1970s to 950 mm/year by around 1995. The rainfall
decrease during this period was followed by an increase in rainfall between 1995 and 2010-2015,
peaking at approximately 1250 mm/year, before stabilizing at an average of 1125 mm/year during
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the period spanning trom 2019 to 2025. Furthermore, Fig. 7b 1illustrates mterannual fluctuations
characterized by recurring peaks, a climatic phenomenon commonly associated with the El Nino
Southern Oscillation (ENSO) and the Northern Atlantic Oscillation (NAQO) systems. Four of these
prominent peaks (high amount events) are identified with red markers labeled A, B, C, and D.

Fig. 7c illustrates the vertical displacement recorded at the GNSS Rite Station. The rapid uplift
observed during the 1984—1985 unrest, attributed to the uplift of Unit B shown in Fig. 4, was followed
by a gradual subsidence totaling approximately 0.93 m, which persisted until 2004-2005.
Subsequently, beginning in 2005, a monotonic and accelerating uplift is observed, which exceeded
about 1.4 m in January 2025 (Bulletins of the OV-INGV, 2025). Fig. 7d presents the detrended
vertical displacement, isolating its smooth component represented by the orange curve in Fig. 7c. Fig.
7d identifies multiple interannual mini uplifts with an amplitude of about 4-5 cm. The four largest
uplifts are denoted in the figure by letters A, B, C, and D (corresponding to the high rainfall events
of Fig. 7b).

A visual comparative analysis of the graphs in Fig. 7 suggests a correlation between the
multidecadal variations in annual rainfall (Fig. 7b) and the gradual vertical displacement observed at
the GNSS Rite Station from 1985 to the present (Fig. 7c¢), with an approximate time-lag of 1015
years from 1985 to about 1990-1995 and then increases until 2010-2015. Additionally, a comparison
between the interannual fluctuations depicted in Fig. 7b and 7d shows a lagged correspondence,
particularly for the four major peaks labeled with red letters A, B, C, and D in both graphs. This
alignment occurs when accounting for a time-lag of approximately 4 years for peaks A and B, and
around 3 years for peaks C and D. This correspondence suggests that changes in rainfall patterns may
have contributed to the ground vertical movement shown in Fig. 6¢ with time-lags of 4 and 3 years,
respectively, because of the percolation times required by the meteoric water to reach the model core.
After 2010 a 3-year time lag could indicate increased fracturing which facilitates rainwater
percolation.

The graphs in Fig. 7d also show actual rainfall and vertical displacement data and the lagged
correlation between rainfall patterns and CF ground uplift and multidecadal unrest is highlighted.
Here, we propose an empirical model that aims to recreate this time lag between the rainfall record
and the underground water accumulation function by simulating a simple hydrological flow model
as described above.

The model incorporates several free parameters. The choice of the best approximate values of
these parameters was done by a Monte Carlo method of running the model several times by changing
the parameter values to obtain a good configuration that correlates the model outputs with the patterns
of the vertical displacement at the GNSS Rite Station (Fig. 7c¢).

The main free parameters of the model were chosen as: Ry =1 km, R; = 3 km, and R, = 6 km, for
the three concentric areas shown in Fig. 2b; & = 2 km depth; '} = 4 m/day (hydraulic conductivity)
until 1996 and then it is assumed to gradually accelerate as a parabola to /', =5 m/day in 2025; and

= %Vl because we assumed that the second buffer is less fractured than the first one (Fig. 2b).

The above hydraulic conductivity values are empirically assessed because the actual values in CF
are unknown and, in any case, the actual hydraulic conductivity is highly variable because of the
anisotropy of the permeability in CF area. In any case, a hydraulic conductivity of 4-5 m/day suggests
that groundwater flows at an average speed of approximately 5 x 1073 cm/s, or about 1.6 km/year.
This flow rate is reasonable because it is typical in scenarios involving highly fractured igneous and
metamorphic rocks, where hydraulic conductivity can reach values as high as 3 x 1072 cm/s,
corresponding to about 10 km/year (Freeze and Cherry, 1979). The model mean-field hydraulic
conductivity from our model can be converted to an intrinsic permeability using the properties of the

17



681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698

699
700
701
702
703
704

705
706
707
708
709

710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725

726
727

fluid. A hydraulic conductivity of 4 m/day 1S equivalent to an intrinsic mean-field medium
permeability of 4 x 10-1> m? for an aqueous fluid (assumed pure H,O) at 1 bar and 25 °C and 5.8 x
1013 m? for an aqueous hydrothermal fluid at 700 bars (~3 km depth) and 350 °C. These estimated
mean-field intrinsic permeabilities are consistent with weakly consolidated Quaternary marine and
continental deposits and fractured volcanic and volcanoclastic lithologies in the shallow crustal
section near Pozzuoli (Judenherc and Zollo, 2004; Milia and Torrente, 2020). The hydraulic
conductivity V{ is assumed to gradually accelerate from 4 to 5 m/day to reproduce the time lags of 4
and 3 years observed in Fig. 7d. The acceleration of the hydraulic conductivities (V4 and V) could
be explained by the observed increasing seismicity indicative of an enhanced local fracture
permeability. High Gutenberg-Richter ‘b’ values of 1.3—1.7 in the earthquake swarm scaling relation
log N=a — bM (N is the cumulative number of earthquakes with magnitude larger than M and @ and
b are constants) at depths above 3 km is consistent with fracture-aided fluid migration in this region
(Glazner and McNutt, 2021; Tramelli et al, 2024).

Figure 8 shows the results obtained with the model described above under two drainage
conditions (Model case #1 and Model case #2), as detailed below. The adopted two cases were useful
because Eq. (1) has two different components (Hg and H¢), while the model is supposed to simulate
only Hc. For this reason, we run the model for two extreme cases for the drainage timescale (7), as
detailed below.

Fig. 8 (left) shows the results obtained using Models case #1 that assumes that the drainage
timescale is constant as 7(t) = 1 year. Fig. 8 (right) shows the results obtained using Models case #2
that assumes that the drainage timescale is variable as: 7(t) = 1 year until 1985 (just after the 1982—
1984 unrest), then it decreases parabolically in time until 7(t) = 0.5 year in # = 2007 (when the first
mini uplift occurred after the beginning of the new uplift phase in year 2005) and finally to rise again
parabolically until 7(t) = 1.5 year in the year ¢ = 2025 (Fig. 7¢).

The drainage timescale, 7(t), represents the temporal scale over which underground water is
discharged into the sea. A larger t(t) corresponds to increased accumulation of water within Unit C.
In Model case #1, when t(t) is assumed to be constant, the estimated timescale is set to 1 year to
approximately match the previously mean-field hydraulic conductivity of 1.6 km/year since Unit C
is located about 1-2 km below the surface (Fig. 8a;).

In Model case #2, t(t) is assumed to change over time. During the subsidence period (1985—
2005), 7(t) should have gradually decreased because the system opened to fluid circulation by
fracture formation (Lima et al., 2025a and references therein). Conversely, during the uplift period
(post-2007), t(t) should have progressively increased as the uplift is a consequence of the closure of
the system to fluid circulation (Fig. 8a,).

The left and right panels of Fig. 8 show the results of the Model cases #1 and #2 run under the
two discussed drainage scenarios: panels a; and a, report the model outputs given by Eq. (13) that
provides the estimated underground water levels; panels b, and b, (which show the same graph for
comparison) illustrate the vertical displacement recorded at the GNSS Rite Station; panels c; and c,
show the residual of the model outputs detrended to remove the smooth component; and panels d,
and d, (which show the same graph for comparison) show the residual of the vertical displacement
shown in b; and b,. The residual curves shown in Fig. 8 panels ¢, and c; reveal that the underground
water rise function (Eq. (13)) exhibits interannual fluctuations that are strongly correlated with those
observed in the vertical displacement recorded at the GNSS Rite Station. This relationship suggests
that the observed mini uplifts (Fig. 3) may have been driven by variations resulting from fluctuations
in underground water accumulation in Unit C (at approximately 1-2 km depth) beneath Pozzuoli.

The rainwater rise function (Fig. 8 panel ¢, and c,) indicates that these water fluctuations have an
amplitude of approximately 40—50 cm and are broadly consistent with the variations in vertical
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displacement recorded at the GNDSS Rite Station (panels d), which have an amplitude ot about 4-5
cm (Fig. 8 panel d; and d,). This implies that to convert the vertical displacement with our empirically
modelled water accumulation parameter Hc (Eq. (13)) we can use the conversion factor of roughly
10.

By using this empirical conversion factor also for the multidecadal scale, we now proceed to
examine the implications arising from the two scenarios related to the drainage timescale 7(t).

The Model case #1 illustrated in Figure 8a, indicates that the underground water level function,
described by Eq. (13), increased by approximately 3 m from its minimum to its maximum. Using the
conversion factor 10, 3 m corresponds to an estimated ~ 30 cm rise in the vertical displacement
recorded at the GNSS Rite Station. Given that the total vertical displacement Hg, » from 2005 to
January 2025 amounts to about 1.4 m, it can be inferred that Ho = 0.3 m and Hgp =~ 1.1 m.
Consequently, under the assumption that the drainage timescale remains constant over time, most of
the uplift ( ~ 80%) observed at CF could be attributed to the uplift of deeper Unit B, located at a
depth of approximately 3 km. In contrast, interannual changes to rainfall amount contributed to the
minor interannual uplifts plus to roughly 20% of the total uplift from 2005 to 2025 by enlargement
of Unit C, situated at a depth of about 1-2 km.

The statistical tests and their significance of the correlation between the modeled interannual
groundwater accumulation fluctuations (blue curve in Fig. 8c;) and the interannual variations in
vertical displacement recorded at the GNSS Rite Station (Fig. 8d,) are discussed in the Appendix.
The Model case #2 presented in Figure 8a, suggests that the underground water level function (Eq.
(13)) increased by approximately 12 m from its 2005 minimum to its 2025 maximum. This rise
corresponds to an estimated ~1.2 m increase in the vertical displacement recorded at the GNSS Rite
Station. Given that the total vertical displacement Hp, » from 2005 to January 2025 amounts to 1.4
m, it can be inferred that H; = 1.2 m and Hg = 0.2 m. Under the assumption that the drainage
timescale varied over time as hypothesized above, most of the uplift (~86%) observed at CF could be
attributed to the enlargement of Unit C, situated at approximately 1-2 km depth meaning that the
underground accumulation of meteoric water contributed to the interannual mini uplifts plus nearly
86% of the uplift from 2005 to 2025. Under this scenario, the contribution of Unit B to the overall
uplift would be estimated as only ~ 14% of the total displacement.

It is, therefore, evident that the process is also highly sensitive to variations in the drainage
timescale function t(t). For instance, if 7(2025) is assumed to have risen to 1.7 years instead of the
hypothesized 1.5 years, 100% of the total uplift would be attributed to underground water
accumulation within Unit C. This extreme scenario may not be realistic since there is the need to
explain why the drainage time scale should have increased during the last 20 years.

The two models indicate that fluctuations in precipitation over the past 40 years may have
contributed to at least 20% of the total uplift (Model case #1) recorded at the GNSS Rite station
between 2005 and 2025. However, considering the likelihood of a simultaneous increase in the
drainage timescale (Model case #2) — potentially driven by heightened pressure beneath the closed
Unit B— which could partially seal the drainage fractures, meteoric water may accumulate more and
could have played a greater role in the total observed uplift. Thus, Unit B and Unit C may interact
dynamically, as the uplift of Unit B could reduce drainage efficiency, leading to a longer timescale
7(¢) and, therefore, to a major contribution of Unit C to the total uplift.

6. Discussion
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The recent uplift of central Pozzuol1 has been accompanied by shallower earthquake hypocenters
compared to the 1982—1984 uplift episode (De Siena et al., 2017), indicating dynamic changes in the
fractured system at depth. These changes are likely favored by additional rainwater infiltration into
Unit C, which alters the hydrological loading rate and increases pore pressure, thereby enhancing
seismicity. Elevated fluid pressure reduces the normal stress acting on fault planes and may exert a
lubricating effect (e.g., Becken et al., 2011; Scuderi and Collettini, 2016, and references therein).
Moreover, thermal expansion of pore fluids can further destabilize fault systems by decreasing
effective stress across pre-existing zones of weakness, potentially triggering the numerous seismic
swarms observed during the current phase of CF bradyseism (Guerriero and Mazzoli, 2021).

The schematic hydrodynamic circulation (Fig. 4) shows that it is strictly governed by the tectono-
stratigraphic framework.

Subsequent meteoric fluid infiltration is linked to the ongoing stages of syn-folding fracturing.
These folds are indicative of shallow-formed structures characterized by extensive networks of
fractures and faults that enhance fluid mobility (Fig. 6c¢). This reconstruction has significant
implications for understanding the dynamics of the area and forecasting future eruptions.

Based on the described stratigraphy, two main impermeable units define fluid-rich reservoirs
located within Unit A and Unit C (Fig. 4). The key impermeable layer is Unit B that covers the entire
region. Seismic reflection profiles reveal that fluid accumulates within Unit A (Fig. 5b). Critically,
above Unit B, the seismic horizons are parallel and continuous, demonstrating that Unit B effectively
seals the underlying reservoir (Unit A). This confirms that sedimentary Unit B represents an
impermeable barrier within the stratigraphic framework of Naples Bay and Campi Flegrei.

Further confirmation is provided by two distinct aquifers encountered in the Mofete 5 borehole.
These findings support the existence of a regional impermeable layer. In this context, Unit A, located
between the carbonate basement and Unit B, acts as a fluid-rich reservoir subject to overpressure
conditions. Numerous earthquakes beneath Pozzuoli Bay occur within this unit.

The upper impermeable unit is the pyroclastic wedge, which partially seals the Unit C reservoir
until it extends beneath the bay of Pozzuoli, where Reservoir C is not constrained and the fluids reach
the surface forming undersea pockmarks (Figs. 4 and 5c). Beneath the Pozzuoli—Solfatara area, this
boundary between Unit C and the impermeable pyroclastic unit lies between 0.5 and 1 km depth.
Summarizing, a critical distinction emerges between the reservoirs of Unit A and Unit C. Unit A is
uniformly sealed by Unit B across the basin, while Unit C is only sealed where the pyroclastic wedge
is present and where bradyseismic takes place. As illustrated in Fig. 4, in the absence of pyroclastic
deposits above Unit C, fluids escape upward and discharge at the seafloor. This explains, along with
the tectonic anticline formation under Pozzuoli Rite, why this area is affected by the maximum uplift.

Fig. 4 shows the reactivation of ancient normal faults during the deposition of pyroclastic wedges,
particularly in the eastern part of the section. The tectonic event documented in Pozzuoli Bay over
the last 8 ka (Milia and Torrente, 2000) corresponds to the formation of a syn-sedimentary fold,
culminating in the Pozzuoli—Solfatara anticline — a highly faulted region where fault orientations
follow regional tectonic trends (e.g., Bruno et al., 2007). In this context, tectonic inversion has folded
the strata within zones bounded by reactivated normal faults.

The structural and stratigraphic permeability architecture critically influences fluid distribution
and migration pathways (e.g., Sibson, 1996, 2003). These pathways generally involve downward
percolation of meteoric and sea waters through fractures and upward movement of magmatic fluids.
The depositional setting in which folds form governs a spectrum of fluid transport processes, with
fluids driven from high- to low-pressure zones. Overall, deep hydrothermal systems are exceptionally
water-rich, facilitating overpressure generation and fluid escape throughout the development of
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anticlines. T'his results 1in diverse tluid migration structures — trom deep to shallow — such as mud
dykes, sills, laccoliths, volcanoes, fluid escape pipes, crestal normal faults, and thrust faults. Among
these, crestal anticline faults play a major role in transmitting fluids to upper fold regions (Evans and
Fisher, 2012).

Within Unit C, upward fluid migration through folded strata is likely reflected by the seismicity
occurring at depths of 1-2 km below the pyroclastic wedge (Unit D, Fig. 4). Faults beneath the crestal
anticline — Solfatara, Pisciarelli, and Agnano — reach depths of around 2 km (Fig. 6¢), enhancing
the pyroclastic wedge’s permeability and enabling fluid escape from Unit C.

These fluids rise through faults and mix locally with shallow groundwater (Aiuppa et al., 2006).
Volcano-tectonic discontinuities in this zone also promote vertical mixing among meteoric water,
deep COs-rich fluids, and seawater.

Once again, the “hydrothermal model” explains how Unit B (Fig. 4), which is subject to
compressive tectonic stress due to the anticline formation, governs bradyseism over timescales from
1 to 100 years, acting as a valve between the hydrostatic and lithostatic systems. If fully sealed, Unit
B could cause 40 m uplift (Lima et al., 2009). However, the fractured system prevents complete
sealing, resulting in limited uplift or subsidence.

Connectivity between the two systems evolves cyclically through hydrothermal deposition of
secondary minerals (reducing permeability) and fracture propagation (increasing permeability). This,
along with the thermo-poroelastic properties of rocks (first advanced by Casertano et al., 1976), leads
to alternating uplift and subsidence phases (Lima et al., 2025a, and references therein). Lima et al.
(2025a) argue that in 2005, closure of fractures in Unit B and the increase in lithostatic pressure
started both a new phase of ground uplift and a partial sealing of the fractures (by mineralization
depositions, see: De Vivo et al, 1989; Belkin and De Vivo B., 2023; Belkin et al., 2023, 2024) and
that the slower uplift velocity is due to the opening of new moderate fractures that allows the deep
fluids to escape, reducing the pressure of magmatic fluid below the impermeable layer corresponding
to Unit B (Fig. 4). These magmatic fluids would be released into the Reservoir C (Fig. 4b) as
demonstrated by recent studies on the chemical-physical variations recorded in the Solfatara
fumaroles (Caliro et al., 2025).

The present study complements previous research, taking into consideration the contribution of
infiltrating meteoric water to the uplift of Pozzuoli Rite. The proposed model evaluates the infiltration
of meteoric water under Pozzuoli and shows a correlation between the recharge of rainwater into the
CF geothermal buffer and the uplift caused by the local bradyseism. Previous studies have identified
correlations between rainfall events, tidal activity, and seismicity in the region (Palumbo, 1985;
Mazzarella and Palumbo, 1989; Petrosino et al., 2018; Scafetta and Mazzarella, 2021) but not
explicitly linked to the vertical ground movement. Those studies suggested triggering mechanisms
due to meteoric and sea water infiltration as well as lunar and solar tidal effects. For instance, on
March 13, 2025, the most significant seismic event in the past 40 years (M = 4.6, made up of two
close earthquakes) coincided with a full Moon, several days of low atmospheric pressure in the
Campanian Plain, and heavy rainfall. Rainfall, low atmospheric pressure, and tidal activity act as
perturbing factors in a critically balanced system.

Petrosino et al. (2018) and Scafetta and Mazzarella (2021) observed that rainfall does not always
trigger earthquakes at CF, nor are all seismic events necessarily caused by water infiltration. In fact,
CF area is inherently seismically active due to bradyseism dynamics caused mostly by magmatic
fluids being continuously released from the crystallizing magma (>7.5 km deep), with its
crystallization front migrating downward (Fig. 4; Burnham, 1979; Lima et al., 2005).
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Such magmatic tluids, at lithostatic pressure, are trapped at depth by the impermeable Unit B
(Fig. 4), until the effective stress exceeds the fracture strength, creating low magnitude seismic
events, and the transfer of fluids into Unit C.

The novelty of our study lies in analyzing long-term rainfall data (from 1950) using a simple
hydrogeological model (section 5) to assess variations of meteoric water underground infiltration
since at least 1985 correlated with the detailed tectonic stratigraphic reconstruction of CF volcanic
system. The hypothesis of the model is that the CF system can be subdivided into three concentric
areas with a central reservoir below Pozzuoli Rite that can accumulate infiltrated meteoric water
because it has an anticline structure with two reservoirs constrained between two impermeable layers
(Figs. 4 and 6), which do not allow the fluid to easily discharge causing an overpressure. For lack of
data, only empirically average hydraulic conductivities for each area are considered. The estimated
hydraulic conductivities, when converted to intrinsic permeability, are reasonably consistent with
lithologies like those of CF area.

Morphologically, the CF region near Astroni-Solfatara is a seismically active highly fractured
zone that serves as an efficient collector of meteoric waters (Figs. 4 and 6¢). In particular, the Astroni
crater is an area covering ~2.5x10% m? upstream Solfatara-Pisciarelli area (Fig. 2b), which contains a
small lake of ~5x10% m? at its bottom. Another significant basin east of Solfatara is the Agnano crater
(~3x10° m?), which hosted a volcanic lake (~10° m?) until it was drained via channels constructed in
1870. Additional craters, like Lake Avernus (Fig. 2b), are also found on the western side of Pozzuoli.
Fig. 7b shows that the 365-day meteoric water amount function in the CF area presents interannual
peaks every few years (which are indicated with the letters A, B, C, D). Fig. 7d shows, instead, the
residual curve of the vertical displacement in Pozzuoli Rite Station (Fig. 7c). By comparing Fig. 7b
and 7d, it is observed that the meteoric water amount function correlates well with the function
describing the vertical displacement of the Pozzuoli area both at the decadal and interannual scales.
In fact, rainfall amount decreased from the late 1970s to about 1990-1995 and then increases until
2010-2015 and remained approximately constant until date (Fig. 7b). This pattern correlates well,
with a time lag of 10—15 years with the vertical displacement decrease from 1985-2005 and the
subsequent uplift until the present (Fig. 7¢). Instead, the time-lag between the interannual mini-uplift
peaks of rainwater amount is about 4 years prior to 2010 (Fig. 7d), then it decreases to about 3 years
afterward, indicating an increase in hydraulic conductivity.

The proposed model was used to simulate if the infiltration of meteoric water in the reservoir of
Unit C under Pozzuoli Rite can contribute to the observed uplift dynamics. To explain the observed
lagged correlations shown in Fig. 7, we take into consideration that the rainwater accumulation also
depends on a timescale 7(¢) of discharge that could change in time because of the seismicity of the
area. The model simulations are shown in Fig. 8. Here, we model two different cases: Model #1 uses
a constant timescale 7(¢) of discharge; Model #2 uses a variable timescale 7(f) of discharge. The
increase in the timescale 7(¢) of the drainage in Model #2 (Fig. 8 right) leads to an increase in the
contribution of rainwater penetrating in Unit C to the total uplift.

The model simulations suggest that the interannual mini uplifts are related to the interannual
variation of rainfall amount. For example, the strong mini uplift occurred in 1989 (point A in Fig. 7d)
could have been triggered by the significant increase in rainwater between 1985 and 1987 (point A
in Fig. 7b). The same lagged correlation of about 3—4 years between interannual rainwater maxima
and all observed mini uplifts of about 4-5 cm is evident by comparing Fig. 7b and 7d, and the water
processed signals in Fig. 8c; and 8c,.

In fact, both Model cases #1 and #2 show that the interannual variations of the meteoric water
infiltration within Unit C correlate well with all observed mini uplifts (Fig. 8c and 8d). The time-lag
observed with the rainwater amount is covered by the percolation times that the meteoric water,
falling on the land of CF area, needs to reach the model core under Pozzuoli Rite (Fig. 4, area “Eb”).
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In summary, the results of this study (Fig. ¥) indicate that an increase in raimnwater infiltration has
occurred from 2004-2005, likely along with Unit B sealing and the beginning of a new phase of
ground uplift. We interpret that the total uplift is the combined contribution of both the fluid pressure,
mostly of magmatic origin under the impermeable Unit B, and of meteoric water penetrating in Unit
C under the impermeable pyroclastic Unit. Our Model #1 suggests that meteoric water accumulation
under Pozzuoli Rite has contributed a minimum of 20% of the total uplift (Fig. 8a;). Model 2, instead,
implies a larger contribution to the total uplift of meteoric water accumulation in Unit C because it
supposes that Unit B can control the fracturing of the system that can change the drainage timescale
7(¢). In the present case, it is likely that z(¢) has increased since 2005 (Fig. 7c) when the uplift slowly
started.

A final consideration is that tectonic events on a regional scale could have an impact on
bradyseism. For example, the rapid uplift recorded between 1982 and 1984, when approximately
1.80 m of ground inflation occurred in just two years, could have been a consequence of the 1980
Irpinia earthquake of M 6.9 (Bernard and Zollo, 1989), located about 90 km from CF. It could be
hypothesized that the latter triggered — within two years — fracturing of the crystallized carapace
of the deep magma chamber with the release of magmatic fluids in Reservoir A (Fig. 4) causing an
increase of lithostatic pressure acting as a powerful driver of unrest. Even the eruption of Vesuvius
in 79 AD is thought to have been triggered — after a long repose time — by a regional earthquake
that struck 15 years earlier (Morgan et al., 2006).

7. Conclusions

This study documents the contributions of fluids having diverse origins to drive ground deformation
and seismic activity in the geologically and tectonically complex CF area of southern Italy.
Specifically, this work suggests a direct dynamic link between multiscale temporal rainfall patterns
and bradyseism in CF, Italy. This connection necessarily involves time-lags, as rainwater must
percolate through subsurface layers to reach the accumulation core located beneath Pozzuoli, at
approximately 1-2 km depth. This temporal delay has been hydrologically modeled and is consistent
with the hydrogeologic properties of the sediments and lithologies underlying the region.

The observed shift in time lags — from about 4 years before 2010 to roughly 3 years afterward —
between interannual fluctuations (mini uplifts of 4-5cm), may indicate that the hydraulic
conductivity slightly increased from 2005 to date, possibly resulting from enhanced intrinsic
permeability due to increased fracturing caused by seismic activity associated with the accelerated
uplift rate since 2010.

The multidecadal pattern of ground deformation, characterized by subsidence from 1985 to 2005
followed by uplift since 2005, appears correlated with a similar variation in the rainfall record, with
an estimated lag of around 10—15 years. The hydrological Model #1 estimates that about 20% of the
1.4 m uplift since 2005 may be attributed to groundwater infiltration. However, this percentage could
increase depending on the drainage efficiency determined by a variable timescale 7(¢) of discharge,
as demonstrated by Model #2.

The proposed model underscores the significant role of rainfall input in the current unrest and offers
a quantitative framework for estimating its contribution. To mitigate uplifts and to keep constant the
underground meteoric water level in Unit C below Pozzuoli we estimated that it is necessary to draw
something of the order of 1000 m? of underground water per hour.
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Our results suggest also that a strategic mitigation measure could be to drain the surface meteoric
water at the CF area and, particularly, that falling inside the Astroni crater located upstream from
Solfatara—Pisciarelli. Historically, such an intervention would resemble the project carried out in the
Agnano crater in 1870, when surface water accumulation formed a lake. Today, the Solfatara—
Pisciarelli remains the most concerning area for public safety. However, the main benefits of such
intervention may become relevant only after a few years, due to the time required by the meteoric
water to percolate into Unit C below Pozzuoli. In any case, meteoric water may trigger the local
seismic activity within few days or weeks from rain events because infiltration of rainwater could
lubricate superficial faults (Scafetta and Mazzarella, 2021).

Fracturing at the apex of the anticline beneath the Solfatara crater is particularly intense, forming a
network of fractures that terminate at approximately 2 km depth, resulting in shallow seismic activity.
Conversely, in the Bay of Pozzuoli, fracturing at the syncline extends to greater depths, which gives
rise to deeper seismicity. Additionally, earthquakes with magnitudes equal to or greater than 4 are
concentrated along the main faults affecting the area and witness the reactivation of the preexisting
faults during the present tectonic activity. Finally, the tectono-stratigraphic architecture of the CF
area raises questions about the interpretation of the CF volcanic system as a caldera.
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Appendix: Statistical test

To test the statistical significance of the observed correlation between the interannual water
accumulation fluctuations (blue curve in Fig. 8c;) and the interannual variations in vertical
displacement recorded at the GNSS Rite Station (Fig. 8d;) we adopt three methodologies:

The direct Pearson linear correlation between the two curves depicted in Fig. 8c; and 8d, gives a
correlation coefficient R, = 0.127 that, for the 13,879 daily data from 01/01/1987 to 12/30/2024, gives
a confidence probability of P << 0.000001, which means that the two curves are highly correlated.

We use a Monte Carlo approach to test whether random rainfall records with mean and standard
deviation equal to the real one could produce water accumulation curves with correlation results
statistically compatible with that obtained using the real data, R, = 0.127, which is assessed above in
point 1. To accomplish this, we shuffle the original daily rain record to reproduce 1000 synthetic
daily rain records with the same length of the original one. The random shuffling destroys the
autocorrelation patterns observed in the data but conserves its mean and standard deviation of the
record. Thus, the test can assess the correlation relevance of the specific dynamics present in the
rainfall record, as processed by Model 1, with the interannual variations in vertical displacement
recorded at the GNSS Rite Station (Fig. 8d,). Each of the produced 1000 synthetic daily rain amount
records are processed by Model 1 to produce 1000 synthetic interannual water accumulation
fluctuations equivalent to those shown by the blue curve in Fig. 8c;. We evaluate the Pearson linear
correlation coefficients, R; (i=1, ..., 1000), between these 1000 synthetic records with the interannual
variations in vertical displacement recorded at the GNSS Rite Station (Fig. 8d;) from 01/01/1987 to
12/30/2024. We found that 81% of the 1000 synthetic records produced R values lower than R,, which
is the correlation coefficient found above in point 1. Moreover, we calculate the standard deviation,
A; (i=1,..., 1000), of these 1000 synthetic records from 01/01/1987 to 12/30/2024 as estimates the
amplitude of the produced fluctuations. We calculate the standard deviation of the real interannual
water accumulation fluctuation record to be 4, = 42 cm. We found that the distribution of the 1000
A; (i=1, ...,1000), of the synthetic records has an average =26 cm and a standard deviation o=
5 cm. This means that the real 4, = 42 cm is outside the typical three-sigma range of the synthetic
ensemble which covers around 99.7% of the total probability; therefore, from a statistical point of
view the ensemble of the 1000 synthetic water accumulation records is not statistically compatible
with the actual one.

If instead of the rain record, it is shuffled the interannual variations in vertical displacement recorded
at the GNSS Rite Station (Fig. 8d;), we found that 100% of the 1000 synthetic records produced R
values lower than Ro.

The above tests suggest that the interannual water accumulation fluctuation record obtained with
actual data shows dynamical patterns much more pronounced than those obtained with the synthetic
ones, and these patterns appear to be sufficiently well correlated with the interannual variations in
vertical displacement recorded at the GNSS Rite Station (Fig. 8d;) as suggested by the statistical test
in point 1.
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Figure captions

Figure 1. (a) Structural map of the Vavilov Basin-Eastern Tyrrhenian Margin; the green faults are
Pliocene in age in the Central Tyrrhenian Sea and Lower Pleistocene in the Eastern Tyrrhenian
Margin, the orange faults are Middle Pleistocene, the white faults are late Quaternary in age. CA:
Cancello borehole; TC: Trecase borehole. Modified from Milia et al. (2015, 2017). (b) Structural map
of the Campanian Margin from the Sorrento Peninsula to the Campi Flegrei area. White faults are
Middle Pleistocene in age; Red faults are Late Quaternary in age (PP: Penta Palummo; MB: Miseno
Bank; DB: Monte Dolce dike; NC: Nisida Complex). Modified from Milia and Torrente (2011). (¢)
NW-SE geologic section across the Campanian Margin that shows the stratigraphy of the Naples
Bay-Campi Flegrei half-graben bounded by the Middle Pleistocene-late Quaternary NE-SW trending
normal faults (Modified from Milia et al., 2003; Milia and Torrente, 2011, 2020).

Figure 2. (a) Structural map of the Campi Flegrei—Pozzuoli Bay area (from Milia and Torrente,
2000): 1. Onshore; 2. Offshore, highly fractured areas (affected by an uplift of 100%—-50%); 3.
Normal faults; 4. Crest of the Pozzuoli anticline; 5. Trough of the Pozzuoli syncline. Black stars
indicate the location of deep geothermal boreholes (Mofete - MF1, MF2, MF5, and San Vito - SV1,
SV3). (b) Google Earth CF map showing the hypothesized three concentric buffers used in the model
(R1-R2-R3) into which the CF region is conceptually divided considering the tectonic areas (red fault
lines) shown in (a), which are interpreted to be characterized by different hydraulic conductivities.
(c) Seismic section across the Syncline (Epitaffio Valley) offshore Pozzuoli along line C shown on
Fig. 2a (modified from Milia et al., 2000). (d) Seismic section through the faulted zone offshore
Pozzuoli along line D shown on Fig. 2a (modified from Milia et al., 2000).

Figure 3. Ground displacement at Pozzuoli Porto since 1905, measured by precision leveling (until
year 2000, in red) and using data from the nearby GPS benchmark of Rione Terra (since 2000, blue
dots) (from the Bulletins of the Osservatorio Vesuviano, INGV and Bevilacqua et al., 2024). (Inset)
Reconstruction of the vertical displacement of the Serapeo fourth floor in Pozzuoli, from the 3rd
century AD to the present (Rolandi et al., 2025).

Figure 4. Schematic migration pathways for both meteoric and deep magmatic fluids. Fluids in the
reservoir Unit C are confined by the Unit D that thins out and disappears beneath the Gulf of Pozzuoli,
where fluids can migrate up to the seafloor surface to produce the observed pockmarks. E-W oriented
geologic section across the Solfatara-Pozzuoli area and Pozzuoli Bay (for location see Fig. 1a). The
various geologic and stratigraphic features shown include faults and fractures in red. Colour legend:
(1) Magma depth (Zollo et al., 2008); (2) Crystallized magma (Lima et al., 2025a and references
therein); (3) Crystalline/carbonate lithologies; (4) Unit A (1.0-0.7 Ma), made up of continental to
shallow marine deposits, representing the deeper reservoir of magmatic fluids (Milia and Torrente,
2015a, 2015b; Lima et al., 2025a and references therein); (5) Unit B (0.7-0.4 Ma), mainly made up
of clays representing the deeper impermeable unit; (6) Unit C (0.4—0.1 Ma), made up of silts and
sands with localized old lava lenses, representing the shallow reservoir containing mostly meteoric
and sea waters; (7) Pyroclastic deposits including the Campanian Ignimbrite deposits (Unit D, <0.1
Ma) representing a relatively impermeable unit compared to overlying and underlying units, this Unit
D is highly permeable where highly fractured and faulted; (8) Yellow Tuff deposits (<35 ka); (9)
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Marine clastic sediments (silts and sands) in Pozzuol1 Bay, the unconformity marks the boundary
between the pre-folding strata and syn-folding deposits; (10) Alluvial deposits onshore.
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Figure 5. N-S oriented seismic sections supporting the interpretation ot tluid pathway in the
stratigraphic succession offshore Campi Flegrei. (a) Map showing the distribution of the Campanian
Ignimbrite and location of the seismic profiles shown in (b) and (¢). (b) Multichannel seismic section
showing Unit A characterized by parallel reflectors (1) that transitions to a high amplitude scattered
reflections northward (2), indicating the presence of fluids in the sediments below Penta Palummo
area. Upward the Unit C, is characterized by parallel reflectors (3) from North to South. The change
of the seismic facies from (2) to (3) indicate that Unit B corresponds to an impermeable seal. (c)
Single channel seismic reflection profile showing evidence for the migration of fluids, that are present
in the Unit C, until the seafloor in the area where the pyroclastic units are absent.

Figure 6. (a) Relocated seismicity 2014-2023 — its surface distribution and vertical projections
along the XY axes — in the Campi Flegrei area (redrawn from Tan et al., 2025), also shown the traces
of the syncline and anticline axes of Fig. 2a. The reference point is Rite Station (14.14°E, 40.82°N).
(b) Strain distribution within a fold showing extension in correspondence of the anticline (X) and of
the syncline (Y) respectively above and below the neutral surface (from Ramsay, 1967). (¢) Structural
and stratigraphic compartmentalization showing as the permeability is strictly controlled by the
fractures and strata permeability. The comparison with the Pozzuoli Anticline and the depth of
earthquakes suggests a neutral surface at 2/2.5 km of depth.

Figure 7. (a) Daily rainfall measurements across Campi Flegrei since 1970. (b) Rainwater 1-year
cumulative curve (blue line), with its multi-year smooth curve (red line); (c) Ground displacement
(blue line) at the GNSS Rite Station with its multi-year smooth curve (red line). (d) Residual vertical
displacement obtained by detrending the red curve from the blue curve in (c), which highlights several
mini uplifts. The high rainfall events indicated by the points A, B, C and D in panel (b) are interpreted
to have driven the significant mini-uplifts shown in panel (d) with time lags of about 4 years before
2005 and about 3 years after 2010.

Figure 8. Comparison between modelled groundwater accumulation and vertical ground movement
as a function of the discharge time scale 7(t). (a;) and (a;) show the output of Eq. (13) in the model
under the two conditions: (1) constant 7(t); (2) variable t(t). (b;) and (b,), which are equal for
comparison, show the ground displacement at the GNSS Rite Station; note the close multidecadal
correlation between (a;) and (b;). (¢1) and (c,) show the curves in (a;) and (a;) detrended of their
interannual component after removing the smooth components. (d;) and (d;), which are equal for
comparison, show the curves in (b;) and (b,) detrended of their interannual component after removing
the smooth components.
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1423 Highlights:
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1425 Pozzuoli downtown uplifted by 1.4 meters between 2005 and January 2025.

1426 Uplift and associated seismicity are partially induced by rainwater infiltration.

1427 Two separated water reservoirs above and below about 2 km are identified.

1428 Rainwater accumulation below Pozzuoli accounts for over 20% of total ground uplift.
1429 It is proponed surface drainage to reduce ground uplift and seismicity.
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